skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shekhar, Sudhanshu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Magnetoelastic (ME) sensors, which can be remotely activated via magnetic fields, are an excellent choice for wireless monitoring of biological parameters due to their ability to be scaled into different sizes and have their surface functionalized for chemical or biological sensing. In this study, we present the application of a commercially available ME material (Metglas 2826 MB) to develop a sensor system that can monitor the attachment of anchorage‐dependent mammalian cells in two‐dimensional in vitro cell cultures. Results obtained with the developed sensors and detection system correlated with microscopic image analysis of cell quantification, which showed a linear relationship between the sensor response and attached fibroblast cells on the sensor surface. It was also revealed that the developed ME sensor system is capable of providing temporal profiles of cell growth corresponding to different stages of cell attachment and proliferation in real‐time. 
    more » « less